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The interaction picture is used together with the channel-packet method in a new time-dependent approach
to compute reactive scattering matrix elements. The channel-packet method employs the correlation function
between two Møller states to compute scattering matrix elements. The interaction picture reduces wavepacket
spreading when computing the Møller states. The details of this new approach are illustrated using a simple
one-dimensional example where the size of the grid required for computing the Møller state in the interaction
picture is reduced by a factor of 2 when compared with required grid size in the Schro¨dinger picture.

1. Introduction

Reactive scattering-matrix(S-matrix) elements yield the prob-
ability that reactants in a given initial asymptotic reactant state
will collide and scatter into products in a final asymptotic
product state.1-3 For reactants with two or more degrees of
freedom, the calculation of S-matrix elements is numerically
intensive, and various time-dependent wavepacket techniques
have been developed in an effort to reduce the required
computational effort.4-12 A primary weakness shared by these
time-dependent methods is the large grid required to support
the evolving wavepacket before it enters the interaction region
of the potential, as well as after it exits the interaction region
and spreads out into one or more arrangement channels. One
approach for reducing the required grid size employs the
interaction picture to propagate the wavepackets with less
spreading than occurs in the Schro¨dinger picture.

Previous use of the interaction picture has been limited to
half-reactions involving a single arrangement channel.3,13-16 The
principal difficulty in extending the interaction picture to treat
multichannel reactive scattering has been the absence of a single
asymptotic Hamiltonian suitable for all arrangement channels
involved in the reaction.3 In this paper, we describe a new
technique for computing S-matrix elements that surmounts this
difficulty by using the interaction picture together with the
recently developed channel-packet method.17-19

The channel-packet method enables the use of the interaction
picture for computing reactive S-matrix elements by splitting
the computational effort into two parts. In the first part,
asymptotic reactant and product wavepackets are individually
propagated into the interaction region of the potential. Since
the asymptotic reactant wavepacket is propagated independently
of the product wavepacket, it is possible to choose an asymptotic
Hamiltonian and corresponding interaction picture that is well
suited for the reactant arrangement channel. In a similar fashion,
the asymptotic product wavepacket is propagated independently
of the reactant wavepacket, and it is possible to choose an
asymptotic Hamiltonian and corresponding interaction picture
well suited for the product arrangement channel. By using two

different interaction pictures, one for the reactant arrangement
channel and one for the product arrangement channel, it is
possible to realize savings in the required grid size similar to
those previously achieved in the non-reactive half-collisions.16

During the second part of the channel-packet method, the
reactant and product wavepackets obtained from the first part
of the calculation are further propagated using the Schro¨dinger
picture. The time-dependent correlation between the evolving
wavepackets is calculated as they bifurcate into energetically
accessible arrangement channels and are absorbed using absorb-
ing boundary conditions.20-26 A simple one-dimensional ex-
ample is used to illustrate the essential features of this new
approach.

2. The Channel Packet Method

The time-dependent channel-packet method is used to com-
pute S-matrix elements in the momentum representation. This
is accomplished by constructing an initial reactant channel
packet,|ψin

γ 〉, in the coordinate representation, from the direct
product of an internal reactant eigenstate, labeledγ, with a linear
combination of plane waves describing the relative motion of
the reactants and products. The channel packet|ψin

γ 〉 is
propagated backward in time using an asymptotic Hamiltonian,
Ha

γ, that correctly describes the dynamics of the reactants in
theγ-channel asymptotic limit where they are widely separated
and noninteracting. The resulting state is then propagated
forward in time using the full scattering Hamiltonian,H, yielding
the reactant Møller state,|ψ+

γ 〉. In a similar fashion, an initial
product channel packet,|ψout

γ′ 〉, is constructed in the coordinate
representation. The product channel packet is propagated
forward in time using an asymptotic Hamiltonian that properly
describes the asymptotic dynamics of the products, and then
backwards in time using the full Hamiltonian. This sequence
of propagations is motivated by the Møller-operator formulation
of scattering theory,3 where
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|ψ(
γ 〉 ) Ω(

γ |ψin
out

γ 〉 ) lim
tf-∞

[eiHt/pe-iHa
γt/p]|ψin

out

γ 〉 (2.1)
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Ω(
γ are Møller operators, and the scattering operator,

As discussed in greater detail in the next section, the asymptotic
HamiltonianHa

γ, used to propagate the reactant channel packet
|ψin

γ 〉, provides the transformation from the Schro¨dinger picture
to an interaction picture well suited for computing the reactant
Møller state|ψ+

γ 〉. Similarly, the asymptotic HamiltonianHa
γ′,

used to propagate the product channel packet|ψout
γ′ 〉, provides

the transformation from the Schro¨dinger picture to an interaction
picture well suited for computing the product Møller state
|ψ-

γ 〉. The time-dependent correlation between|ψ+
γ 〉 and |ψ-

γ 〉

is computed in the Schro¨dinger picture and then used to calculate
S-matrix elements,

where theη(k) are expansion coefficients of the plane waves
used to construct the initial wavepackets and theµ are reduced
masses corresponding to the reactant and product arrangement
channels.

There have been several applications of the channel-packet
method to a variety of scattering problems. In particular, the
method has been used to compute state to state S-matrix
elements for the collinear H+ H2(n) T H2(n′) + H reaction19,26

and more recently for a two-dimensional model OC+ OH-
(n)0) T OCO(n)0) + H reaction.28 In a larger three-
dimensional calculation, Dai and Zhang have used the channel-
packet method to compute exact state-to-state S-matrix elements
for the H+ O2 reaction.10 One common advantage shared by
all of these calculations is the facility with which the channel-
packet method provides S-matrix elements over a wide range
of energies. In addition to exact quantum calculations, the
channel-packet method has also been useful in formulating
several approximate strategies for computing S-matrix elements.
These include a new semiclassical method for computing
S-matrix elements developed by Garashchuk and Tannor,29 and
the application of the multiconfiguration time-dependent Hartree
approach to computing S-matrix elements by Ja¨ckle and
Meyer.30

3. Application of the Interaction Picture

The transformation from the Schro¨dinger picture to the
interaction picture is

where the subscript I labels the interaction picture and the
subscript S refers to the Schro¨dinger picture.31 It is seen readily
from eq 3.1 that|ψ(0)〉I ) |ψ(0)〉S. The operatorH0

γ may be
any portion of the full Hamiltonian, where

Typically, H0
γ ) pγ2/2µ, wherepγ is the momentum conjugate

to the Jacobi coordinate describing the relative separation
between reactants or products. The interaction-picture Hamil-
tonian is then defined as

and the time-evolution operator is

Since Møller states are defined in the Schro¨dinger picture at
time t ) 0, they are equal to their counterparts in the interaction
picture:

The initial asymptotic reactant and product states are also
equivalent

Therefore, if the interaction picture is constructed withH0
γ )

pγ2/2µ, a free-particle Hamiltonian, the Møller states are obtained
by a simple propagation in the interaction picture

The channel-packet method thus enables the use of different
interaction pictures most appropriate for each channel, since
reactant and product Møller states are propagated independently.

In order to realize a reduction in grid size when computing
Møller states,we employed the PR-adapted “nested” interaction
picture.32 The PR-adapted nested interaction picture shifts the
origins of both the momentum (P) and the coordinate (R)
representations, defining the state vector,

where〈R〉 ) 〈ψ|IRI|ψ〉I ) 〈ψ|SRS|ψ〉S is the expectation value
of the position operator, and〈P〉 is the expectation value of the
momentum operator. Wavepackets can be propagated using
fewer grid points in the PR-adapted interaction picture because
they remain centered on the grid in both the momentum and
coordinate representations.

The PR-adapted equation of motion is given by

where

An iterated Lanczos propagator8 is used in the interaction picture
because of the time dependence of (3.10). To improve the
accuracy of the propagator for a given time step∆t, the time-

Sγ′γ ) Ω-
γ′†Ω+

γ (2.2)

Cγ′γ(t) ) 〈ψ-
γ′|e-iHt/p|ψ+

γ 〉 (2.3)

S(k′γ′,(kγ
γ′,γ ) p

2πη-
/ ((k′γ′) η+((kγ)

[|k′γ′||kγ|
µγ′µγ

]1/2∫-∞

∞
dt ×

exp{iEt
p }Cγ′γ(t) (2.4)

|ψγ(t)〉I ) eiH0
γt/p|ψγ(t)〉S (3.1)

H ) H0
γ + H1

γ (3.2)

HI
γ(t) ) eiH0

γt/pH1
γe-iH0

γt/p (3.3)

UI
γ(t, t0) ) eiH0

γt/pe-iH(t,t0)/pe-iH0
γt0/p (3.4)

|ψ(
γ 〉I ) |ψ(

γ 〉S (3.5)

|ψin
out

γ 〉I ) |ψin
out

γ 〉S (3.6)

|ψ(
γ 〉I ) lim

tf-∞
UI

γ†(t)|ψin
out

γ 〉I (3.7)

|ψ〉′′I ) ei〈R〉PS/pe-i〈P〉RS/peiH0t/p|ψ〉S (3.8)

ip
d
dt

|ψ〉′′I ) H′′|ψ〉′′I (3.9)

H′′ ) ei〈R〉PS/pe-i〈P〉RS/peiH0
γt/pH1

γe-iH0
γt/pei〈P〉RS/pe-i〈R〉PS/p (3.10)
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evolution operator can be approximated with a second-order
truncation of the Magnus expansion16,33

An iterative application ofU′′I on |ψin
out

γ 〉 yields the Møller states

|ψ(
γ 〉.

4. S-Matrix Elements via the Channel-Packet Method in
the Interaction Picture

We illustrate the interaction-picture channel-packet technique
using a one-dimensional potential,

whereΘ(x) represents a Heaviside step function. This potential,
shown using the dotted lines in Figures 1-3, is chosen to
schematically represent the reaction path of a reactive molecular
collision that has two different asymptotic Hamiltonians. For
x f -∞, the asymptotic Hamiltonian is

and forx f +∞, the asymptotic Hamiltonian is

The values used for the parameters in eq 4.1 are given in Table
1.

The initial coordinate representation of the product and
reactant wavepackets shown in Figure 1 is a Gaussian,

The choice of+k0 in eq 4.4 will yield the probability, as a
function of kinetic energy, that reactants approaching from the
left will form products exiting to the right. The values of the
coefficients used in eq 4.4 are given in Table 2. In the
Schrödinger picture, the first propagation in eq 2.1 is performed
analytically,34 using the initial wavepackets together withHa

L

Figure 1. Initial channel packetsψin(x) andψout(x) (solid line) are the
same in the interaction and Schro¨dinger pictures, since they are
evaluated att ) 0. The potential (dotted line) is given by eq 4.1, where
the asymptotic Hamiltonian to the right of the interaction region of the
potential differs from the asymptotic Hamiltonian to the left by a
constant potential offsetV0 ) 0.01 atomic units.

U′′I (tk+1,tk) ) exp{- i
p
∫tk

tk+1H′′I (t′) dt′ -

1

2p2∫tk

tk+1 dt′∫tk

t′
[H′′I (t′),H′′I (t′′)] dt′′ + ...} ≈

exp{- i
p
H′′I (tk + ∆t

2 )∆t - 1

12p2
[H′′I (tk+1),H′′I (tk)](∆t)2}

(3.11)

V(x) ) Ae-R(x-a)2
- Be-â(x-b)2

+ Ce-γ(x-c)2
+

DΘ(x - a)Θ(c - x)x + V0Θ(x - a) (4.1)

Ha
L ) p2/2µ (4.2)

Ha
R ) p2/2µ + V0 (4.3)

〈x|ψin(out)
γ 〉 ) [2πσ2]-1/4 exp[-

(x - x0)
2

4σ2
+ ik0x] (4.4)

Figure 2. Reactant channel packet propagated backward in time tot
) -2000 atomic units, and the product channel packet propagated
forward in time tot ) 2000 atomic units. Since the propagation occurs
under a free-particle Hamiltonian, the wavepackets are unaffected in
the interaction picture (solid line). In the Schro¨dinger picture (dashed
lines) the reactant and product wavepackets translate and spread,
requiring a larger grid.

Figure 3. Reactant Møller state,ψ+(x) (solid line), and the product
Møller state,ψ-(x) (dashed line), are obtained by propagating the
intermediate reactant and product states forward and backward,
respectively, to timet ) 0.

TABLE 1: Coefficients Used in Eq 4.1 To Create the
Potential Function That Appears in Figures 1-3a

potential coefficients

A 0.03 a -4.0 R 1.0
B 0.09 b 0.0 â 1.0
C 0.02 c 4.0 γ 1.0
D 0.00125

a All quantities are in atomic units.

TABLE 2: Coefficients Used in Eq 4.2 To Create the
Asymptotic Wavepackets Shown in Figure 1a

wavepacket coeff

x0 0.0
k0 8.5
σ 0.55
µ 1224

a All quantities are in atomic units.
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andHa
R to obtain intermediate reactant and product wavepack-

ets, respectively. As shown in Figure 2, these wavepackets have
both translated and spread relative to the initial wavepackets.
Typically, this wavepacket translation and spreading in the
Schrödinger picture generates a requirement for large grids.
However, in the interaction picture, the intermediate wavepack-
ets do not translate or spread, and remain identical to the initial
wavepackets. Figure 2 also illustrates the intermediate interac-
tion-picture channel packets and demonstrates that they require
a smaller grid when compared with the intermediate Schro¨d-
inger-picture wavepackets. In the interaction picture, the
intermediate wavepackets are used in eq 3.7 together with the
appropriate asymptotic Hamiltonian to compute the reactant and
product Møller states. The Møller states shown in Figure 3
were computed on a grid of 256 points using the nested
interaction picture with a second-order Lanczos propagator and
a four-dimensional Krylov subspace. Constants used for the
propagation are listed in Table 3. For comparison,the same
Møller states were computed in the Schro¨dinger picture,
requiring a grid of 512 points.

To complete the calculation, the Møller states were propa-
gated in the Schro¨dinger picture using a split-operator propagator
together with absorbing boundary conditions to compute the
correlation function in eq 2.3.26,27 S-matrix elements were then
computed using eq 2.4, resulting in the probability for reaction
shown in Figure 4. For comparison, the probability of reaction
computed entirely within the Schro¨dinger picture is also shown
in Figure 4.

It is important to note that since short iterative Lanczos
propagation is employed when using the nested interaction
picture, a greater number of FFTs is required per time step when
compared to the split-operator approach commonly used for
time-independent Hamiltonians in the Schro¨dinger picture. This

results in a trade-off between the computational savings afforded
by the grid reduction, and the requirement for a larger number
of FFTs per time step. An alternative to the short iterative
Lanczos propagator that avoids this trade-off is the second-order
finite difference propagation technique developed by Zhang.13,35

Using this approach, the number of FFTs per time step is
reduced to the same number required by the split-operator
method. This second-order finite difference technique has been
successfully applied to a two-dimensional model of CH3I
photodissociation,36 and to a three-dimensional model of
vibrational predissociation of van der Waals molecules.37

5. Conclusion

Through the use of the channel-packet method, the interaction
picture can be used to compute reactive scattering matrix
elements on reduced computational grids. Previous use of the
interaction picture has been restricted to single scattering
channels, limiting its application to nonreactive scattering
problems. The channel-packet method opens the possibility of
extending the efficacy of the interaction picture by allowing
each Møller state to be computed in an interaction picture
derived from its asymptotic Hamiltonian. In the simple one-
dimensional illustration given here, a 2-fold reduction in required
grid size has been demonstrated.
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(30) Jäckle, A.; Meyer, H.-D.J. Chem. Phys.1995, 102, 5650.
(31) Shankar, R.Principles of Quantum Mechanics; Plenum: New York,

1980.

(32) Tannor, D. J.; Besprozvannaya, A.; Williams, C. J.J. Chem. Phys.
1992, 96, 2998.

(33) Magnus, W.Commun. Pure Appl. Math.1954, 7, 649.
(34) Merzbacher, E.Quantum Mechanics; Wiley: New York, 1970.
(35) Zhang, J. Z. H.Comput. Phys. Commun.1991, 63, 28.
(36) Zhang, D. H.; Sharafeddin, O. A.; Zhang, J. Z. H.Chem. Phys.

1992, 167, 137.
(37) Zhang, D. H.; Zhang, J. Z. H.J. Phys. Chem.1992, 96, 1575.

Reactive Scattering Matrix Elements J. Phys. Chem. A, Vol. 102, No. 47, 19989493


