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A New Application of the Interaction Picture To Calculate Reactive Scattering Matrix
Elements
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The interaction picture is used together with the channel-packet method in a new time-dependent approach
to compute reactive scattering matrix elements. The channel-packet method employs the correlation function
between two Mgller states to compute scattering matrix elements. The interaction picture reduces wavepacket
spreading when computing the Mgller states. The details of this new approach are illustrated using a simple
one-dimensional example where the size of the grid required for computing the Mgller state in the interaction
picture is reduced by a factor of 2 when compared with required grid size in théddoyeo picture.

1. Introduction different interaction pictures, one for the reactant arrangement
channel and one for the product arrangement channel, it is
possible to realize savings in the required grid size similar to
those previously achieved in the non-reactive half-collisiéns.
product staté2 For reactants with two or more degrees of During the second part of the channgl-packet methpd, the
reactant and product wavepackets obtained from the first part

freedom, the calculation of S-matrix elements is numerically of the calculation are further propagated using the Stihoer
intensive, and various time-dependent wavepacket techniques propag 9 ge

have been developed in an effort to reduce the required picture. The time-dependent correlation between the evolving

computational effort-12 A primary weakness shared by these wavepackets is calculated as they bifurcate into energetically

time-dependent methods is the large grid required to Supportf';u:cessible arrangement channels and are absorbed using absorb-

the evolving wavepacket before it enters the interaction region Ing boqndary cond.|t|0n%‘°.‘26 A simple pne-dlmensmnal ex

of the potential, as well as after it exits the interaction region ample is used to illustrate the essential features of this new
and spreads out into one or more arrangement channels. Oné"pproaCh'

approach for reducing the required grid size employs the
interaction picture to propagate the wavepackets with less
spreading than occurs in the Sctiirger picture.

Previous use of the interaction picture has been limited to
half-reactions involving a single arrangement chaffel'6 The The time-dependent channel-packet method is used to com-
principal difficulty in extending the interaction picture to treat pute S-matrix elements in the momentum representation. This
multichannel reactive scattering has been the absence of a singlés accomplished by constructing an initial reactant channel
asymptotic Hamiltonian suitable for all arrangement channels packet,|y! (] in the coordinate representation, from the direct
involved in the reactioR. In this paper, we describe a new product of an internal reactant eigenstate, labglegith a linear
technique for computing S-matrix elements that surmounts this combination of plane waves describing the relative motion of
difficulty by using the interaction picture together with the the reactants and products. The channel padkét is
recently developed channel-packet methtd? propagated backward in time using an asymptotic Hamiltonian,

The channel-packet method enables the use of the interactiony? “that correctly describes the dynamics of the reactants in
picture for computing reactive S-matrix elements by splitting  the-channel asymptotic limit where they are widely separated
the computational effort into two parts. In the first part, ang noninteracting. The resulting state is then propagated
asymptotic reactant and product wavepackets are individually onvard in time using the full scattering Hamiltoni, yielding
propagated into the interaction region of the potential. Since the reactant Maller statéy”.[] In a similar fashion, an initial
the asymptotic reactant wavepacket is propagated independent% duct ch | K yfrl:“ nstructed in th ’ rdinat
of the product wavepacket, it is possible to choose an asymptotic roduct channet pac &ltyo, () IS constructe € coordinate

representation. The product channel packet is propagated

Hamiltonian and corresponding interaction picture that is well forward in time using an asvmptotic Hamiltonian that prooerl
suited for the reactant arrangement channel. In a similar fashion, 9 ymp properly

the asymptotic product wavepacket is propagated independentlygesﬁ\r/:/bfz t?r? t?niympgﬁtlctﬁy?ﬁ?qgsnﬁrt t:ie Ero_(:lrj‘ids’ and rt]hen
of the reactant wavepacket, and it is possible to choose an ?C a St' ne ust_ gt deb uth al\/l ”0 an. " sfsequlet_ce
asymptotic Hamiltonian and corresponding interaction picture of propagations Is motivated by the Valler-operator formutation

well suited for the product arrangement channel. By using two of scattering theory,where

Reactive scattering-matrix(S-matrix) elements yield the prob-
ability that reactants in a given initial asymptotic reactant state
will collide and scatter into products in a final asymptotic

2. The Channel Packet Method

T Now at Air Force Research Laboratory, AFRL/PRS, 10 E. Saturn Blvd., lyLO= Q% |yj, 0= lim [eiHUhe_ngUh] lyih O (2.1)
Edwards AFB, CA 93524. out t—Feo out
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Q' are Mgller operators, and the scattering operator, Typically, H} = p”?/2u, wherep? is the momentum conjugate
to the Jacobi coordinate describing the relative separation
g7 = g;i"rgi (2.2) between reactants or products. The interaction-picture Hamil-

tonian is then defined as

As discussed in greater detail in the next section, the asymptotic . .

HamiltonianH?, used to propagate the reactant channel packet HI(t) = e'Hgt’hH{e_'HZ’”h (3.3)

|k ) provides the transformation from the Setirger picture

to an interaction picture well suited for computing the reactant

Mgller state|y’ 0] Similarly, the asymptotic Ha,miltoniaHZ,

used to propagate the product channel pa [J provides ) ) L

the trans?orrﬁagon from 51e Schtinger pictSretﬁ)égn i%teraction Ui (t, to) = et gt (3.4)

picture well suited for computing the product Mgller state

|” [ The time-dependent correlation betweeri Cand|y?” 0 Since Mgiller states are defined in the Satinger picture at
timet = 0, they are equal to their counterparts in the interaction

C(t) = @ le "Myl D (2.3)  picture:

and the time-evolution operator is

is computed in the Schdinger picture and then used to calculate [y Q= |y (3.5)
S-matrix elements,

, o The initial asymptotic reactant and product states are also
h [1K, 1K | f°° dt equivalent

20" (£K,) (k)| 4yt
iEt

exp{ W} c’(t) (2.4)

Sii(}',y’,:tky =
h 0= |ykr 3.6

v, =1y 18 (3.6)

Therefore, if the interaction picture is constructed wlth =

p”*/2u, a free-particle Hamiltonian, the Mgller states are obtained
Ay a simple propagation in the interaction picture

where they(k) are expansion coefficients of the plane waves
used to construct the initial wavepackets andittege reduced
masses corresponding to the reactant and product arrangeme
channels.

There have been several applications of the channel-packet [y 0= lim U')|yh O (3.7)

. . . t—=Foo out

method to a variety of scattering problems. In particular, the
method has been used to compute state to state S-matrix

elements for the collinear H Hy(n) <= Ha(n') + H reactiof26 The channel-packet method thus enables the use of different
and more recently for a two-dimensional model GCOH- interaction pictures most appropriate for each channel, since
(n=0) < OCOM=0) + H reaction?® In a larger three- reactant and product Mgller states are propagated independently.

dimensional calculation, Dai and Zhang have used the channel- N order to realize a reduction in grid size when computing
packet method to compute exact state-to-state S-matrix elementd/i@ller states,we employed the PR-adapted “nested” interaction
for the H+ O, reactionl® One common advantage shared by p|(_:tl_Jre.32 The PR-adapted nested interaction plctu_re shifts the
all of these calculations is the facility with which the channel- ©rigins of both the momentumPj and the coordinateR)
packet method provides S-matrix elements over a wide range'ePresentations, defining the state vector,

of energies. In addition to exact quantum calculations, the

channel-packet method has also been useful in formulating )= RP e PRI 1 (3.8)
several approximate strategies for computing S-matrix elements.
These include a new semiclassical method for computing
S-matrix elements developed by Garashchuk and Taf{raorl

the application of the multiconfiguration time-dependent Hartree
approach to computing S-matrix elements byckla and
Meyer30

whereRO= | |R||yLl= p|sRs|y($ is the expectation value

of the position operator, and@llis the expectation value of the
momentum operator. Wavepackets can be propagated using
fewer grid points in the PR-adapted interaction picture because
they remain centered on the grid in both the momentum and
coordinate representations.

3. Application of the Interaction Picture The PR-adapted equation of motion is given by

The transformation from the Schdimger picture to the

interaction picture is . d "
P il v = H" [y (3.9

' OF= "My (01 (3.1)
where
where the subscript | labels the interaction picture and the )
subscript S refers to the Scldinger picturé®® Itis seenreadily  H" = émmdhe*imms’hei”é'fm{e*i%t’hétms/he*mwﬁ (3.10)
from eq 3.1 thaty(0)l) = |y(0)d. The operatoH} may be

any portion of the full Hamiltonian, where An iterated Lanczos propagatds used in the interaction picture

y because of the time dependence of (3.10). To improve the
H=Hy+H; (3.2) accuracy of the propagator for a given time stepthe time-
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Figure 1. Initial channel packetgin(X) andy.u(X) (solid line) are the Figure 2. Reactant channel packet propagated backward in tinte to
same in the interaction and Schinger pictures, since they are = —2000 atomic units, and the product channel packet propagated
evaluated at = 0. The potential (dotted line) is given by eq 4.1, where forward in time tot = 2000 atomic units. Since the propagation occurs
the asymptotic Hamiltonian to the right of the interaction region of the under a free-particle Hamiltonian, the wavepackets are unaffected in
potential differs from the asymptotic Hamiltonian to the left by a the interaction picture (solid line). In the S¢ldinger picture (dashed
constant potential offsef, = 0.01 atomic units. lines) the reactant and product wavepackets translate and spread,
requiring a larger grid.
evolution operator can be approximated with a second-order
truncation of the Magnus expansiéi®

03 | ',"'-“/ 008
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Figure 3. Reactant Mgller statey+(x) (solid line), and the product

Mgller state,y—(x) (dashed line), are obtained by propagating the

intermediate reactant and product states forward and backward,

We illustrate the interaction-picture channel-packet technique respectively, to time¢ = 0.

using a one-dimensional potential,

4. S-Matrix Elements via the Channel-Packet Method in
the Interaction Picture

TABLE 1: Coefficients Used in Eq 4.1 To Create the
Potential Function That Appears in Figures 1-3?2

potential coefficients

V(X) = Ag 0@ _ gaBXb? 4 camr(x—o?
DO(X — a)@(c — x)x + V,O(x — a) (4.1)

A 0.03 a —4.0 a 1.0
where®(X) represents a Heaviside step function. This potential, B 0.09 b 0.0 B 1.0
shown using the dotted lines in Figures-3, is chosen to g 8-85125 ¢ 4.0 4 1.0

schematically represent the reaction path of a reactive molecular
collision that has two different asymptotic Hamiltonians. For
X — —oo, the asymptotic Hamiltonian is

a All quantities are in atomic units.

TABLE 2: Coefficients Used in Eq 4.2 To Create the
Asymptotic Wavepackets Shown in Figure &

L__ 2
Ha=p12u (4.2) wavepacket coeff
and forx — +oo, the asymptotic Hamiltonian is Xo 0.0
ko 8.5
R_ .2 o 0.55
HY =p’2u+V, (4.3) u 1224

The values used for the parameters in eq 4.1 are given in Table “All quantities are in atomic units.

1.
The initial coordinate representation of the product an
reactant wavepackets shown in Figure 1 is a Gaussian,

g The choice of+ko in eq 4.4 will yield the probability, as a
function of kinetic energy, that reactants approaching from the
left will form products exiting to the right. The values of the
coefficients used in eq 4.4 are given in Table 2. In the
Schralinger picture, the first propagation in eq 2.1 is performed
analytically3* using the initial wavepackets together wlt-rg

VY
X9 ouy = [270% Y4 exp[— % + ikx| (4.4)
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TABLE 3: Quantities Associated with the Generation of the
Intermediate States in Figure 2 and the Mgller States in
Figure 3

Moller-state propagation

t +2000
to 0
At 0.5
AX 0.1
N 256

a All quantities are in atomic units.
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Figure 4. Probability of reaction computed in the interaction picture
(dotted line) and the Schdinger picture (solid line). The interaction-
picture S-matrix elements were computed on a grid half the size required
for the Schidinger-picture matrix elements.

andH?Y, to obtain intermediate reactant and product wavepack-
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results in a trade-off between the computational savings afforded
by the grid reduction, and the requirement for a larger number
of FFTs per time step. An alternative to the short iterative
Lanczos propagator that avoids this trade-off is the second-order
finite difference propagation technique developed by ZH&rg.
Using this approach, the number of FFTs per time step is
reduced to the same number required by the split-operator
method. This second-order finite difference technique has been
successfully applied to a two-dimensional model of ;CH
photodissociatio’® and to a three-dimensional model of
vibrational predissociation of van der Waals molecifes.

5. Conclusion

Through the use of the channel-packet method, the interaction
picture can be used to compute reactive scattering matrix
elements on reduced computational grids. Previous use of the
interaction picture has been restricted to single scattering
channels, limiting its application to nonreactive scattering
problems. The channel-packet method opens the possibility of
extending the efficacy of the interaction picture by allowing
each Mgller state to be computed in an interaction picture
derived from its asymptotic Hamiltonian. In the simple one-
dimensional illustration given here, a 2-fold reduction in required
grid size has been demonstrated.
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